Enology-Grape Chemistry Group

Practical Monitoring and Management of Brettanomyces

Bruce Zoecklein Head, Enology—Grape Chemistry Group Virginia Tech

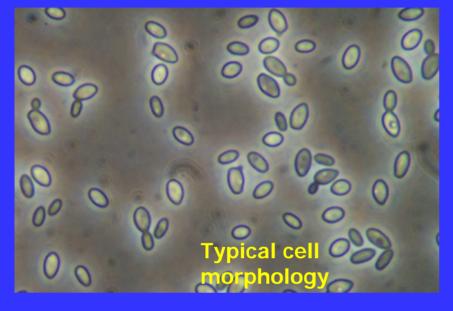
> Lisa Van de Water Pacific Rim Oenological Services

Presentation Outline

- Overview of Brett research from my lab
- Practical conclusions for today's winemaking
- Review of others research
- HACCP-like Plans
- Review of practical Brett management issues

The faster the scientific advances, the greater the risk of widening the gap between what we know and what we do.

-Emile Peynand, 1984


Misconceptions about Brett

- Brett usually comes in on grapes
- Some Brett is in all red wines
- Brett is not found in white wines
- Brett comes into wineries in new barrels
- Brett can only occur in barreled wines
- Brett is found only in dirty cellars
- All Brett is the same

Misconceptions about Brett

- Brett only develops in in dry wines
- Brett won't grow over 13.5% alcohol
- Controlling oxygen can control Brett
- Brett growth always results in high VA
- Brett is a characteristic of all 'French style' wines

The many faces of *Dekkera/Brettanomyces*...

Odd morphology in a culture from Australia, but it is D. bruxellensis

Source: Lisa Van de Water

Brett Descriptors

• Positive

- Complex
- Mature
- Spicy

Wine/Enology-Grape Chemistry Group

Negative (partial list) – Animals

- Sweaty horse/saddle
- Wet dog
- Manure
- Barnyard
- Mousy aftertaste
- Plastic
 - Bandaids
 - Burnt plastic
 - Other
 - Burnt beans
 - Rancid
 - Metallic

Brettanomyces bruxellensis

- What is relationship between descriptors, cell growth and population densities?
- What are the specific chemical compounds responsible for these descriptors?
- What concentrations and ratios are need give a certain set of descriptors?
- What is the matrix/cultivar effect?
- What is the impact of strain variation?

Population dynamics and effects of Brettanomyces bruxellensis strains on Pinot noir wines

> Ken Fugelsang Department of Vitculture and Enology California State University, Fresno

Bruce Zoecklein Enology-Grape Chemistry Group Virginia Tech, Blacksburg

For overview see <u>www.vtwines.info</u> *Enology Notes* #92, Published in Am. J. Enol. Vitic. 54:294-300

Brettanomyces bruxellensis: Comparison of Growth Profiles and Metabolites among Ten Strains in Pinot Noir Wine

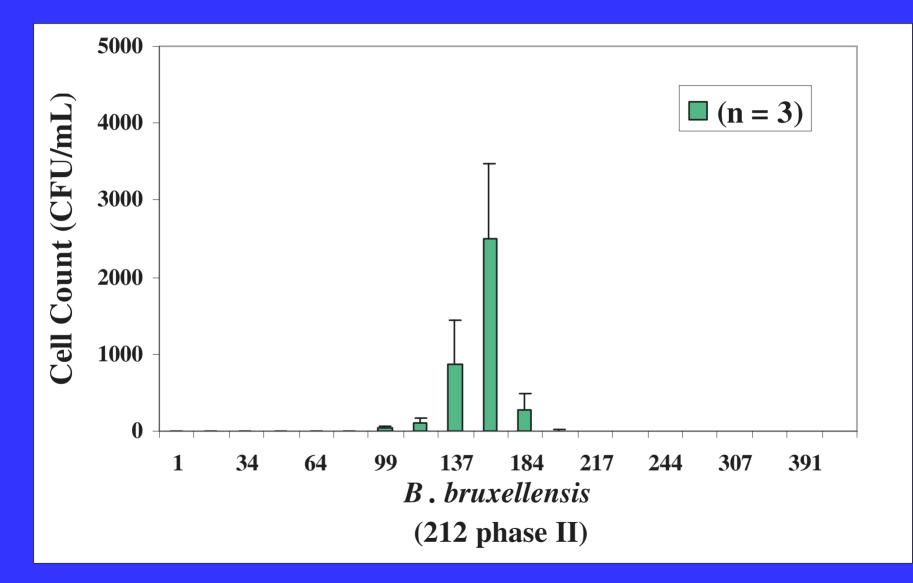
• Question: Can differences in winemaker's experiences with Brettanomyces be attributed to strain, populations and/or metabolite differences?

Experimental Design:

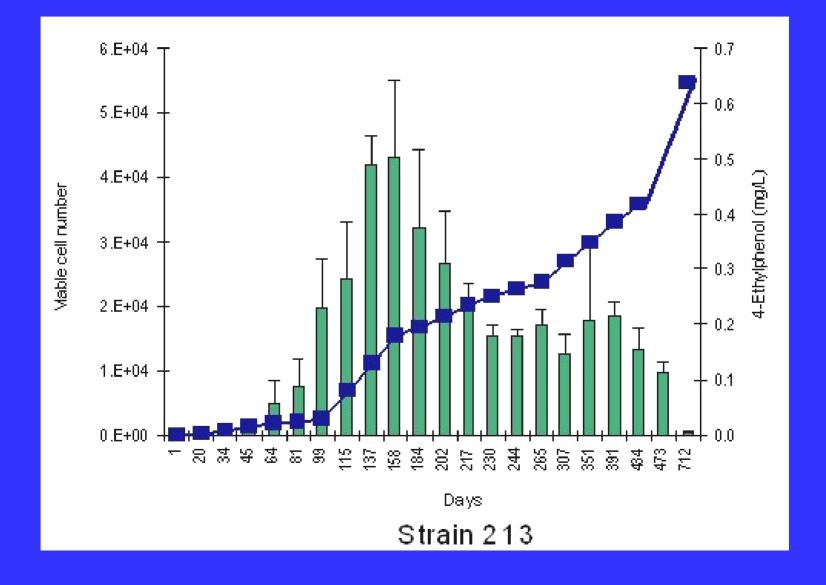
Ten genetically-characterized strains of B. bruxellensis

- Pinot noir: 30 mg/L sulfur dioxide at crush. Ferment to dryness, press, clarify at 5°C (6 weeks).
- Rack to sterile containers, DMDC @ 700 mg/L.
- Bottled
- Initial inoculum: 50 CFU/mL (10 strains x 4 replications) + controls.

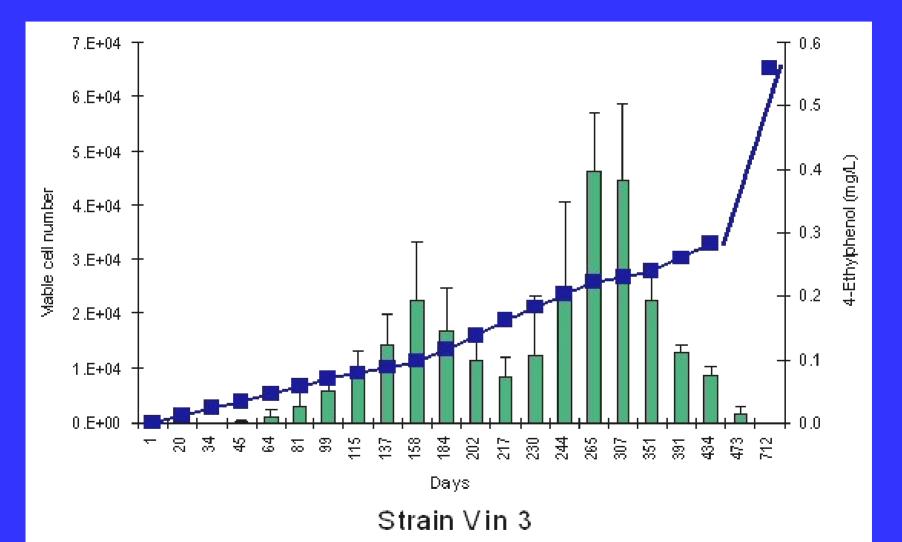
Wine/Enology-Grape Chemistry Group

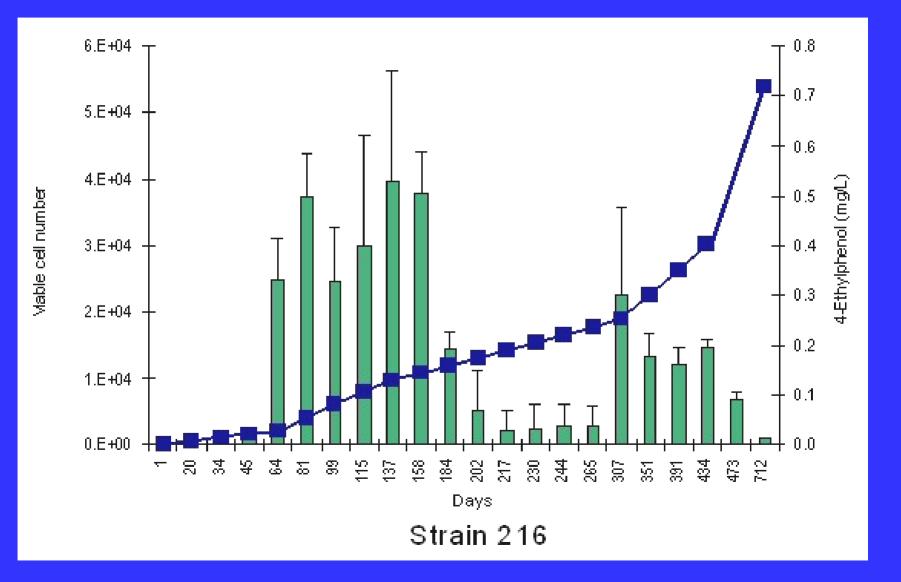


Weekly plating for growth and chemical analysis for up to 712 days or until population declined to <30 CFU/mL.

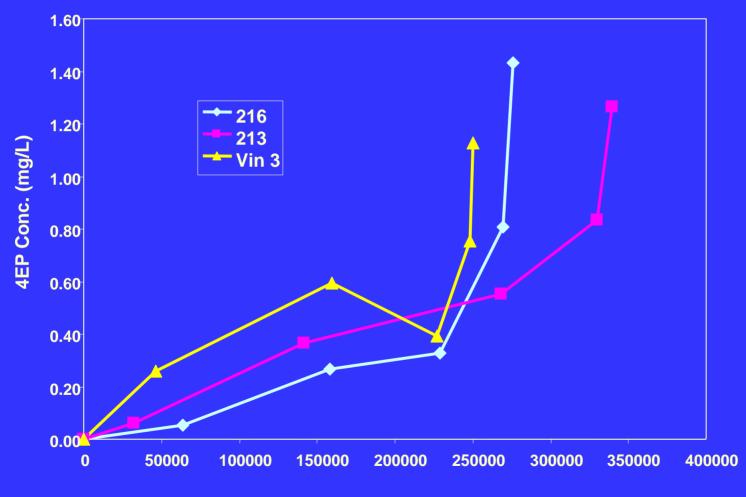

Analyte quantification by HE-SPME, GC/MS:

4-Ethylphenol (4-EP) 4-Ethylguaiacol (4-EG) 2-phenylethanol Guaiacol Isovaleric acid Ethyldecanoate trans-2-Nonenal Isoamyl alcohol Ethyl-2-methylbutyrate

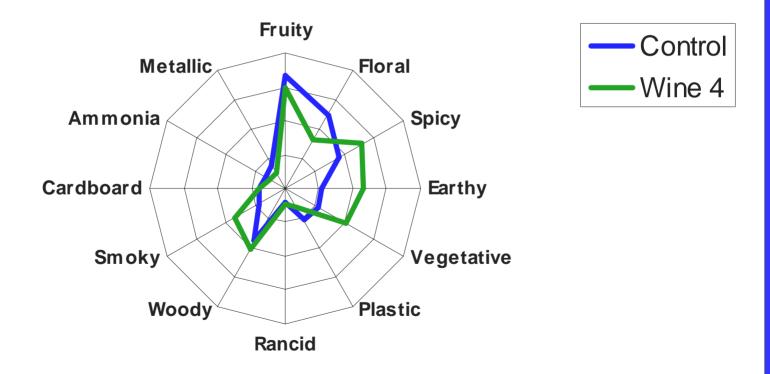

Results


Results (cont.)

Results (cont.)


Results (cont.)

Wine/Enology-Grape Chemistry Group



Cumulative Cell Count

Pinot noir Sensory Evaluation

Brettanomyces Sensory

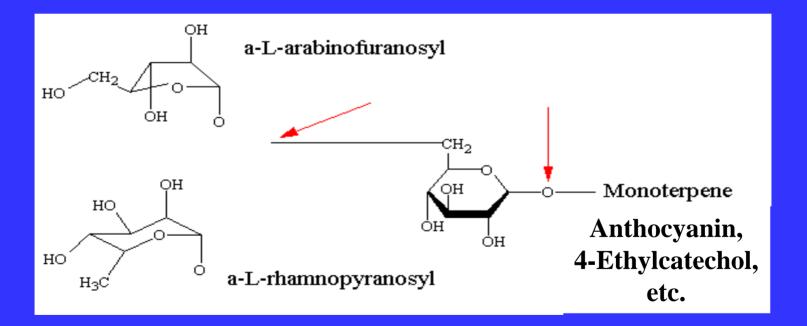
Wine/Enology-Grape Chemistry Group

Conclusions

- Significant strain differences in length of growth cycle and peak population densities
- Blooms explained by VNC
- Large range of 4-ethylphenol (4-EP)
- Large range of 4-ethylguaicol (4-EG)
 - **4-EP and 4-EG correlated**
- 4-EP and 4-EG not correlated to isovaleric acid (IVA)

Wine/Enology-Grape Chemistry Group

Conclusions


- With the exception of one strain, most 4-EP was produced <u>after</u> the population reached maximum cell density.
- The correlation between 4-EP and viable cell density was not as strong as the correlation with cumulative cell density.
- There were significant sensory differences among strains.
- 4-EP correlated to low glucose/fructose.

Viable But Not Culturable (VNC)

- Sublethally injured
 - Injury may be from any stress
 - Ethanol, pH, temperature, sulfite
 - May recover and still ferment and grow
- VNC
 - May still produce enzymes and metabolites
 - Associated with bacteria
 - Not studied extensively in yeasts

Important Enzymes: Esterases, Glucosidases

GlycosidasesGlucosidases

Wine/Enology-Grape Chemistry Group

Glycosidase Activity in *Brettanomyces* bruxellensis strains

H.M. McMahon and B.W. Zoecklein. J. Ind. Micro. Biotech. 23:198-203.

A.K. Mansfield and B.W. Zoecklein. Am. J. Enol. Vitic. 53:303-307.

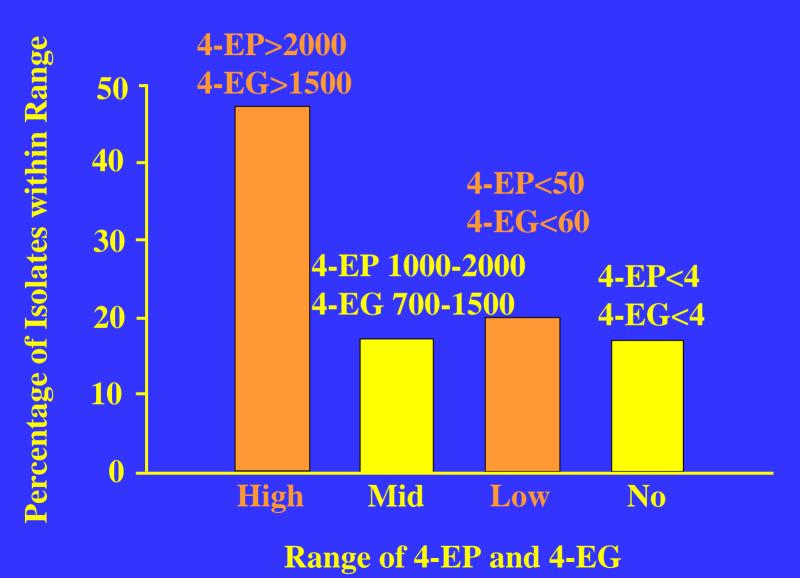
В. bruxellensis	Whole Cell		Supernatant
	Whole Cell	Permeabilized	
211	27 c	142 e	11 bcd
212	5 d	341 a	9 bcd
213	34 c	105 f	14 bcd
214	19 c	110 f	6 cd
215	< LOD	74 g	11 bcd
216	59 b	321 b	24 a
Brux	26 c	182 d	11 bcd
Souche 'Ave'	14 c	138 e	7 cd
Souche 'O'	< LOD	< LOD	4 d
Souche 'M'	82 a	179 d	9 bcd
Vin 1	32 c	14 g	< LOD
Vin 3	22 c	232 c	9 bcd
Vin 4	65 b	25 g	4 d
Vin 5	4 d	21 g	11 bc

Wine/Enology-Grape Chemistry Group

- Large variation among strains in total enzyme activity.
- Eight strains of *Brettanomyces bruxellensis* had high *beta*-glucosidase activity (670-2,650 nM/mL/g dry cells).
- Large variation in supernatant and permeabilized activity.
- Glycosidase activity of Brett is likely how the organism can survive in oak and perhaps some wines for very long periods

Results of Physiological Tests

L. Joseph, T. Henick-Kling, L. Conterno


Regional differences in metabolism

- 75% of European strains used malic acid, 12% CA strains did
- All CA strains used nitrate, < 30% of European strains did
- 63% of European strains used ethanol, 18% CA strains did
- Most CA strains grew at 37 C, no European strains did

Physical Characteristics

- All isolates tolerant to 10% ethanol or higher.
- 33 isolates grew well at pH 2.
- More than 30% of isolates grew at 10° C.
- More than 35% of isolates grew at 37°C.
- 3 isolates (about 10%) grew at both temperature extremes.
- Almost 50% showed tolerance to 30 mg/L or greater free SO₂ at pH 3.4.

4-EP and 4-EG Production

Climate Impact on *Brett* Metabolites Henschke (2004)

- 4-EP / 4-EG decrease in cool regions
- Malvidin-3-*p*-coumaryl glucoside may be precursor to 4-EP
- Malvidin-3-*p*-coumaryl glucoside in lower concentration in cool region, shaded fruit

Brett Growth

Physical effects

- Usually grows slowly, over many months
- Can grow within weeks if conditions are favorable
- Grows in the wine, almost never as a surface film
- Growth is stimulated by oxygen, but very little is required
- Slight CO₂ gas
- Sediment in bottle

Monitoring Brett

Methods:

- Metabolite analysis
- Sensory analysis
- Culturing
- Antibody methods
- Genetic markers: PCR, Scorpions

The key to monitoring and management is to have a good HACCP-like plan in place

HACCP: What is it?

Virginia Tech

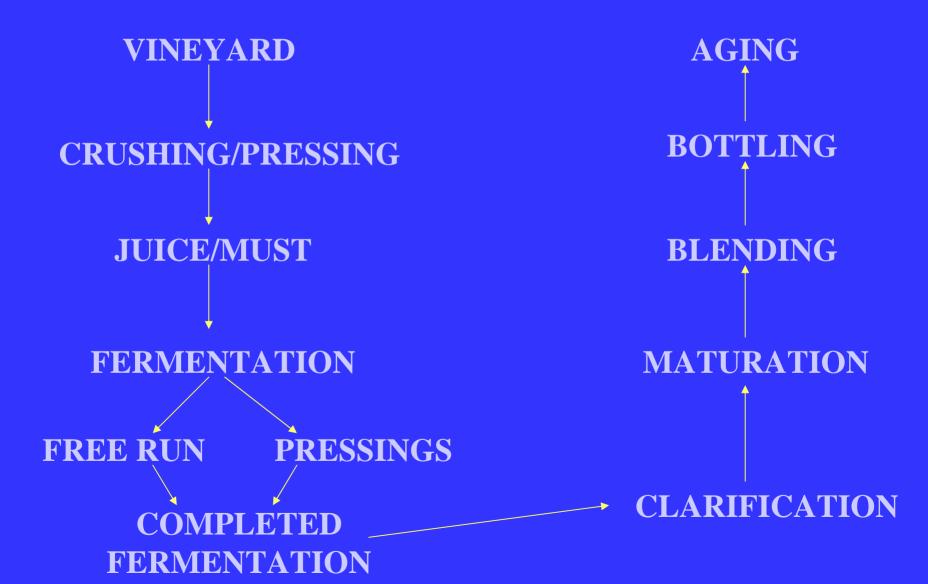
Hazard Analysis & Critical Control

A means of assuring quality through the identification and monitoring of critical points during the production process.

Point system

HACCP-like plans

- Analysis of the dangers to product quality
- Identification and control of the critical steps in the production system
- Chemical, physical, microbiological, and/or sensory monitoring
- Verification


HACCP-like plans help to answer the following

- Why each analysis is performed
- Where the analysis fits into the scheme of quality wine production
- When results are needed
- The specific range for each result
- If the results are not within specification what to do.

7 Steps in Establishment of a HACCP-Like Plan

- 1. Create a production flow diagram
- 2. Identify the critical control point at each process step
- 3. Establish critical limits for each analysis to be conducted
- 4. Develop a monitoring procedure for each critical control point
- 5. Establish a plan for corrective action whenever critical limits are exceeded
- 6. Establish a record system to document action steps taken
- 7. Develop a verification plan for all analyses utilized

HACCP-like Plan Step 1. Create a flow diagram

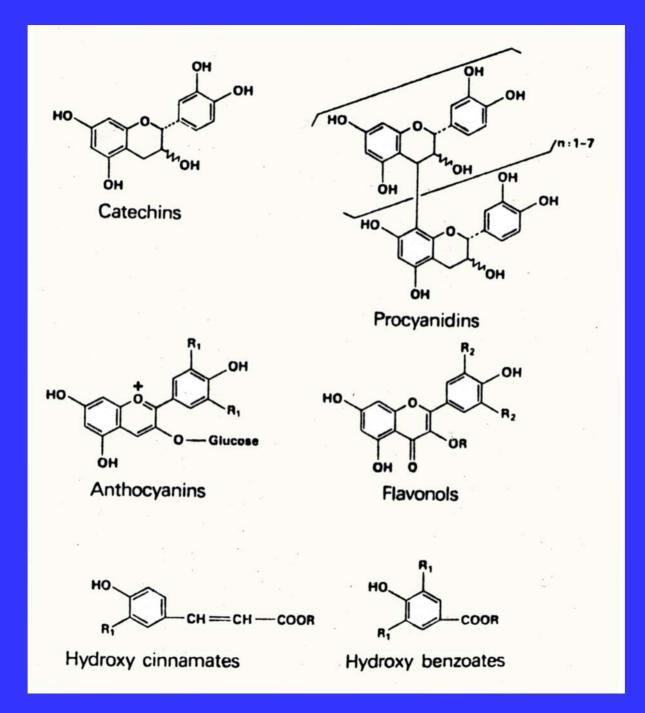
HACCP-Like Plan

Critical Control Point for Brett

VINEYARD SAMPLING

Sanitation Monitoring

CRUSHING/PRESSING


JUICE/MUST

FERMENTATION

Rot culling, temperature, SO₂, enzymes

Sensory, ^oBrix, pH, NSS, fermentable N, TA, SO₂, temp, oxygen, enzymes

Adjustment, °Brix, pH, TA, fermentable N, Sensory, temp Yeast (strain, inoc. vol., % budding, % viability, purity)

Minimize Substrates for Growth

Measure Fermentable N (ammonia and alpha amino acids)

(Formol titration, www.vtwines.info or *Am. J. Enol. Vitic.* 53:325-329.)

- **Excess fermentable N:**
- Lowers the production of esters
- Increases the production of aldehydes
- Increases the likely hood of volatile sulfur compound production
- Increases the fermentation rate and lose of volatiles
- Increases substrates for Brett

All Brett strains require biotin and thiamin All can use Arginine as an N source Excess DAP may serve as 'food' for Brett

HACCP-Like Plan

Critical Control Point for Brett

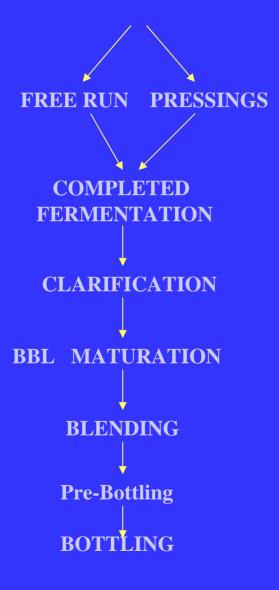
VINEYARD SAMPLING

Sanitation and monitoring

CRUSHING/PRESSING

JUICE/MUST

FERMENTATION


Rot culling, temperature, SO₂, enzymes

Sensory, ^oBrix, pH, NSS, fermentable N, TA, SO₂, temp, oxygen, enzymes

Adjustment, °Brix, pH, TA, fermentable N, Sensory, temp Yeast (strain, inoc. vol., % budding, % viability, purity)

HACCP Critical Control Points for Brett

Sanitation and monitoring

Sensory, tannin, and color MLF (strain, inoc. vol., purity)

Sensory, "Brix, reducing sugar, pH, TA, alcohol, MLF status, oxygen, SO₂, protein stability, bitartrate stability

Sensory, **oxygen**, protein stability, bitartrate stability

Sampling, sensory, temp., sur lie, oxygen, SO₂, MLF status

Sensory, physical, chemical, biological stability

Sensory, pH, micro check

Sensory, fill level, SO₂, oxygen, membrane filtration micro check, DMDC, materials QC

Elements of Sensory Evaluation

- Fully understand the objective (s)
- Evaluate representative samples
- Evaluate under proper conditions (temperature, TNSS, environment)
- Use trained evaluators with reference standards
- Minimize prejudice and bias
- Employ desirable and consistent tasting format
- Interpret results appropriately

Sensory effects of Brett

Reduced varietal character

- Makes fruit 'heavier'
 - Esterase activity degrades some fruity aromas
 - Floral aromas are also reduced
- Aromatic compounds
 - Masks varietal aroma and intensity
- Bitter/metallic finish
- Sometimes: mousy taint (ACPY/ACTPY)

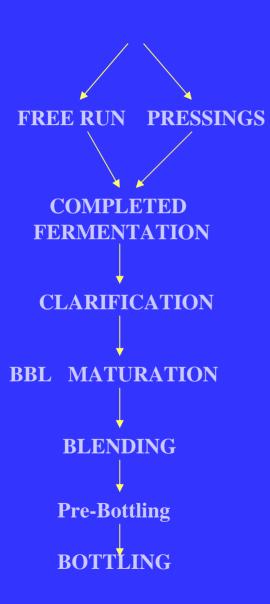
Lots of strain variation

Some aroma/flavor compounds dependant on precursors produced by other yeast and bacteria

Brett Standards

- Components of FlavorSense, San Rafael, CA, Brett standard
 - 4-Ethylphenol
 - 4-Ethylguaiacol
 - Furfural
 - 3-methyl-2-buten-1-ol
 - Guaiacol
 - Isobutyl alcohol
 - Isobutryic acid
 - Isovaleric acid
 - Propionic acid

Brett Aromas


Sensory threshold levels depend on the matrix

- 4 EP 120-1200 ng/L Bandaids, Plastic
- 4 EG 70-150 ng/L Smokey, Spice, Burnt Beans, Medicinal
- Isovaleric Acid 1200 ng/L Rancid, vomit, barnyard
- Combination of these and other metabolites
 Provide the typical sweety horse, leather, horse blankettype odors

Brettanomyces Sensory Detection

- Train to recognize danger signals using standards
 <u>When sensory effects are noticeable</u>, it may be too late
- Matrix effect: cultivar, phenol composition Q and Q, metabolites:
 - Tempranillo 4-EP 125, Cabernet Sauvignon 420 ug/L
- Synergistic effect on detection level: 4-EP + 4-EG=426 ug/L 4-EP alone=620 ug/L
- High 4-EP can mean High Brett character
 Low 4-EP can mean High Bret Character

HACCP Critical Control Points for Brett

Sanitation and Monitoring

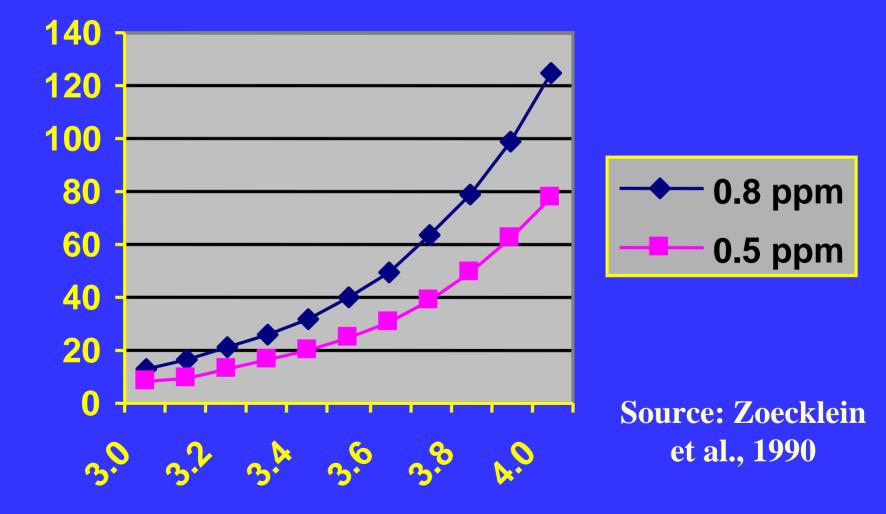
Sensory, tannin, and color MLF (strain, inoc. vol., purity)

Sensory, "Brix, reducing sugar, pH, TA, alcohol, MLF status, oxygen, SO₂, protein stability, bitartrate stability

Sensory, oxygen, protein stability, bitartrate stability

Sampling, sensory, temp., sur lie, oxygen, SO₂, MLF status

Sensory, physical, chemical, biological stability


Sensory, pH, micro check

Sensory, fill level, SO₂, oxygen, membrane filtration micro check, DMDC, materials QC

Wine Chemistry and Brett

- Alcohol synergistic but will not control
- Glucose and Fructose: 0.275 g/L = 1000 ug/L 4-EP
- VA concentration not correlated with 4-EP
- pH effects molecular FSO2 Biofilm formation
- Sulfur dioxide and pH synergistic
 Fewer additions but larger concentration

Free SO₂ Needed to Achieve 0.5 and 0.8 ppm Molecular SO₂, at Different pHs

Enology-Grape Chemistry Group

HACCP Critical Control Points for Brett

Sanitation and Monitoring

PRESSINGS FREE RUN COMPLETED **FERMENTATION CLARIFICATION BBL MATURATION BLENDING Pre-Bottling** BOTTLING

Sensory, tannin, and color MLF (strain, inoc. vol., purity)

Sensory, 'Brix, reducing sugar, pH, TA, alcohol, MLF status, oxygen, SO₂, protein stability, bitartrate stability

Sensory, oxygen, protein stability, bitartrate stability

Sampling, sensory, temp., sur lie, oxygen, SO₂, MLF status

Sensory, physical, chemical, biological stability

Sensory, pH, micro check

Sensory, fill level, SO₂, oxygen, membrane filtration micro check, DMDC, materials QC

BBL Maturation

Old wood vs. new wood cellobiose 0.275 g/L can produce 1000 ug/L 4-EP Sampling representative avoid cross contamination use disposable plastic pipetts top with 'clean' wine (DMDC-**Velcorin** treated or filtered)

Brett and Sanitation

• Monitoring is key

• Understand differences between cleaning and sanitation

• Sanitation methods

Effect of Barrique Sanitation Procedures -Manuel Malfeito-Ferreira, 2004

Barrel sanitation experiment

- Cold rinse, then hot water rinse 3x 70 C
- Same as above plus SO2 1 month (200 ppm pH3)
- Cold rinse, fill with 90 C water 15 min
- Cold rinse, 70 C rinse, steam low pressure 10 min
 - Most effective treatment

• Brett / Dekkera was found 8 mm deep in staves.

Barrels cannot be "sterilized" with SO₂, rinsing, or ozone. Isolate Brett+ barrels.

Ozone Treatment

- High-pressure water wash barrel
 - Thorough blast with sharp stream of hot water
 - Rinse for 2-3 minutes
 - Must remove all organics
 - Cool down completely
- Treat with ozonated water
 - Filter and deionize water before ozonating
 - At least 2-2.5 mg/L ozone in barrel, 0.1 mg/L out
 - Time x Concentration

Ozone Summary

- Strong oxidizing agent
- No chemical residue
- Half-life at ambient conditions 10-20 minutes
- Degrades microbial bio-films
- Degrades natural rubber
- Is a surface active agent-does not penetrate

Brett and Biofilms


- Liquid / solid interface
- 17 / 35 strains form biofilms (Joseph, 2004)
- pH effect
- Impact of cleaning compounds on biofilms

HACCP Critical Control Points for Brett

Sensory, tannin, and color MLF (strain, inoc. vol., purity)

Sensory, ^oBrix, reducing sugar, pH, TA, alcohol, MLF status, oxygen, SO₂, protein stability, bitartrate stability

Sensory, **oxygen**, protein stability, bitartrate stability

Sampling, sensory, temp., sur lie, oxygen, SO₂, MLF status

Sensory, physical, chemical, biological stability

Sensory, pH, micro check, filtration

Sensory, fill level, SO₂, oxygen, membrane filtration micro check, DMDC, materials QC

Wine Bottling and Brett

- Sanitation
- Monitoring
- Filtration and filtration monitoring
- DMDC can be effective
- Synergistic with pH, sulfur dioxide, and alcohol
- Oxygen pick up

Wine/Enology-Grape Chemistry Group

Monitoring Brett

- Have a HACCP-like plan (www.vtwine.info)
- Isolate contaminated barrels
- Sample barrels with disposable plastic pipets
- Top with *Brett*-free wine (filtered, pasteurized and/or Velcorin-DMDC)
- Keep barrels topped-up or not opened
- Monitor carefully before bottling

HACCP Summary

- Define the production process, quality/style indicators, and their recommended values.
- Identify critical control points in the process where specific chemical methods can monitor quality indicators.
- Establish and carry out analysis methods that will give measures of quality/style indicators at each control point.
- Compare measured values with recommended values.
- Decide on action to modify any quality deficiencies.
- Carry out that action.
- Assess the result of that action by further analysis.

Encourage/Discourage *Brett*

- To ENCOURAGE
 <u>Wine composition</u>
 - Red wine
 - pH > 3.6
 - Molecular $SO_2 < 0.2 \text{ mg/L}$
 - Alcohol 13% or below
 - Residual hexose sugars
 - Biotin, thiamine
 - Amino acids
 - Yeast lees present

- To DISCOURAGE
 - **Wine composition**
 - White wine
 - pH < 3.6
 - Molecular SO₂ 0.4 mg/L or greater
 - Alcohol > 13%
 - RS < 0.2 g/L
 - Vitamins depleted
 - "Nutrient desert"
 - Clarified

Encourage/Discourage *Brett*

- To ENCOURAGE Winemaking operations
 - Temperature 25-30 C
 - Oxidative conditions
 - New barrels
 - Poor sanitation
 - Cross-contamination
 - Barrels washed in cold water
 - No aggressive barrel sanitation

To DISCOURAGE

Winemaking operations

- Temperature < 16 C</p>
- Keep containers topped / closed
- Older but uninfected barrels
- Good hygiene
- Keep infected wine separate
- High-pressure hot water wash
- Ozone/burn sulfur wick in barrel

Brettanomyces Detection

- Direct Microscopic Examination
 - Difficult when < 1000 cells/ml</p>
 - Requires skill in identifying cells
- Culturing
 - Sampling method is very important
 - Detects only microbes that are present and alive
 - Disadvantages:
 - Must select and prepare media properly
 - False negatives (VNC)
 - Takes time for growth (3-7+ days)
 - Requires skill in identifying colonies